Scaling Up of The Load Cycle Test Method To District Biomass Heating Systems

Vijay Kumar Verma, Bioenergy2020+ GmbH-Austria Elevator Pitch Budapest, 2016-07-20

Content

- Test methods
 - -Standardized test method
 - -Actual heat demand
 - -The Load Cycle Test Method
- Project Idea

Standardized Test Method

- Boiler efficiency and emissions are usually determined by standardized boiler tests like EN 303-5
- <u>Stable state</u> operational emissions and efficiency at full and part load are measured
- Seasonal efficiency: 85% η_{FL} + 15% η_{PL}

Fig. 1: Example of test cycle of EN 303-5

Real Life Operation

- Boiler starts-up, modulates and shut downs
- Emissions are usually high and efficiency are low under these operations
- These phases are not taken into account by EN-303-5 type test

Fig. 2: Example of boiler operation in real life

BioMaxEff developed Load Cycle Test

•

Fig. 3: Boiler operation according to the LCT method

- A method to determine real life performance of biomass boilers on a test bench
- Method capable of predicting real life operational eficiency with less than 5% deviation.
- Method might be a part of either EN303-5 type test or stand alone type test method

Report: www.bioenergy2020.eu/app/webroot/files/file/ISEB_4_Endbericht_publizierbar.pdf

Test results

		VarioWIN		BioWIN2	
Parameter	r Unit	Load cycle	Real life	Load cycle	Real life
СО	[mg/m ³ _{STP}]	272	343	415	447
NOx	[mg/m ³ _{STP}]	110	135	128	120
OGC	[mg/m ³ _{STP}]	9	7	3	5
Dust	[mg/m ³ _{STP}]	37	25	27	18
Efficiency	%	78,2	75	81,1	83,2
Annual Efficiency	%	-	72,4	0	81,4

12kW Pellet boiler

- Median: 77,5 %
- LCT: 78,2%
- Type test: FL: 91,3; PL 90,6

21kW Pellet boiler

- Median: 83,3 %
- LCT: 81,1%
- Type test: FL: 92,7; PL 92,5

Project Idea: Goal and Benefits

• Goal

 To apply LCT method to improve real life emission and efficiency factors of district heating systems

Target market

- District heating boiler manufacturers
- Heat grid and heat storage system manufacturers

Benefits

- <u>Boiler manufacturer:</u> Improved efficiency and emissions factors under real life operations
- <u>End user:</u> Reduction in heat price due to efficiency improvement

- Heating grid/storage supplier: More accurate coupling between heat demand and supply systems i.e. improved efficiency
- <u>Society:</u> Reduced emissions of pollutants and improved efficiency under real life operation i.e. improvement in environmental quality
- We are Looking for
 - Industrial Partners
 - Scientific Partners
 - Funding opportunities
 - <u>http://ec.europa.eu/environmen</u> <u>t/life/funding/life2016/</u>
 - Horizon2020, different calls

Dr. Vijay Kumar Verma Senior Researcher, Bioenergy2020+ GmbH Austria T + 43 (0) 7416 52238-64 F + 43 (0) 7416 52238-99 vijay.verma@bioenergy2020.eu

Thank you for your attention!

Danube-INCO.NET

Advancing Research and Innovation in the Danube Region