Comparative analysis of the innovation capacity in the WBC with emphasis on joint cooperation needs in the field of innovation

Jadranka Švarc
Institute Ivo Pilar, Zagreb
jadranka.svarc@pilar.hr

Meeting of Steering Platform in Research for WBC
Sarajevo, 1 December, 2011.
WP8 -T8.1 Stocktaking (Ivo Pilar)

Purpose:
- create theoretical and analytical background for the common research and innovation strategy of the WBC region;
- pave the way to the regional innovation system

Instruments (components):
1. **Mapping of the WBC innovation systems** and the key stakeholders based on a comparative approach (ZSI, Vienna);
2. Identification of future research and market needs – TODAY and in the future (2030) reflecting how research and innovation can be geared towards fulfilling these needs through collaboration in the region (JRC-IPTS);
3. **Carrying out a comparative analysis of the innovation capacity in the WBC** with particular focus on joint cooperation needs in the area of innovation (Ivo Pilar)
Comparative analysis of innovation capacities and systems
Methods

1. desk research
2. survey of innovation needs based on two on-line and consecutive questionnaire targeted at two stakeholders - entrepreneurs and researchers (D8.49) (COMPARISON)
3. mapping of the innovation systems carried out by the ZSI (separate study)
4. national reports on innovation infrastructure presented on the 1st innovation Dialog Forum held in Bečići, Montenegro on November 8-9, 2010
5. open questionnaire targeted at selected innovation experts in WBC
Why we are doing this?

- WBC are EU neighbouring countries and potentially important partners for EU in trade (e.g. 60-80% of WBCs exports/imports), investments, infrastructure development (energy, transport), expert/workers mobility, etc;
- the last enlargement of the EU by two new members Bulgaria and Romania, shifted the focus of the EU from Southeast Europe towards WBC as the area where future integration is expected (Skufic, 2010);
- at the same time, the economic, scientific and innovation potentials of WBC do not meet the criteria for integration on an equal footing.
Additional efforts are needed to strengthen the Balkan region in terms of innovation and entrepreneurship capacities; these factors have come into focus of policy actions of EC, OECD, WB, etc. in the early 2000’s.
Much of the Balkans lag behind the rest of the EU. **Croatia’s GDP per capita is about a half of the EU average** while Albania’s is barely more than one-quarter of the EU average. WBC countries will need many decades to catch up with the EU average (Albania 65 years) (Sanfey, 2011)

NEED FOR A NEW GROWTH MODEL BASED ON KNOWLEDGE FACTORS AND INNOVATION

In the majority of WBC total investments in R&D, except Serbia and Croatia, is negligible, while business R&D barely exists.
Similarities: WBCs share

1. Present Economic Model
- Outdated and wrong, based on:
 1. Defensive inter-sectoral restructuring (dismiss of workers, high unemployment rate, large size of informal economies)
 2. Domestic market consumption (mainly by government, public debts)
 3. Low-tech/cost FDI
 4. Strong reliance on foreign/external knowledge = low levels of export competitiveness

2. Similar Pattern of Transition Process
- Strong neoliberal economic policy; political voluntarism; privatization by the “empty shell model” (Županov, 2001); collapse of industrial R&D institutes – “shock without therapy” (Radošević, 1996) = devastation of the 50 years of technological accumulation; domination of foreign (privatised) service/energy companies – banks, telecoms.

3. Impact of the Global Financial Crisis
- Strong deregulation of bank sector - profit seeking, businesses are perceived risky = contraction of business and production in EU
- Decreasing demand + reduction of economic activity + liquidity problems + difficult access to credits + dematerialization of innovation (ICT, bio, nano)

Consequences
- No need for companies to innovate - weak business R&D investments;
- Innovation not science-based
- Competitive advantages are in non-technological sectors and products (tourisms, trade, LM tech manuf.)
- Technology efforts include absorption of foreign technologies and mastery of production capability
- Limited utilization of ICT.
Majority of WBCs are service economies

Employment by economic activity (%), 2009

Although majority of the WBC can be considered as service economy it has nothing to do with the post-industrial knowledge economy since services are in traditional sectors (crafts, tourism)

Source: Pocketbook on the enlargement countries, EUROSTAT, 2011, p. 50
Advantages

The common market of WBC consists of more than 23 million of people that is a respectable basis for regional cooperation in many areas not only in trade that is currently the dominant model of cooperation.
Advantages

Why the regional innovation system (RIS) is needed?

RIS is defined as a group of geographically close:
- firms;
- research institutions;
- governments;
- other institutions (venture capitalists, technology centres, regional agencies, etc.)

Promote the innovation process

The basic argument for RIS

Spatial proximity provides companies with closer social and economic relations and interactions, common market, knowledge, information, motivation, etc. which provides a ground for:

- Fosteriong regional competitive advantage that distant rivals cannot replicate
- Integration of companies into common innovation process supported by the similar values, background and understanding of technical and commercial processes
- Accelerating innovation as a process of learning and knowledge transfer that benefits from the proximity of organizations, markets, social relations, etc.
Differences

- **Overall economic development** and related innovation capacities: there is almost a six-fold difference among WBC in per-capita income between the richest (Croatia) and poorest (Kosovo UNSCR 1244)

- Development of the main **components of NIS-institutional set-up or environment for innovation**
Critical subsystems of innovation system in WBCs

1. R&D and HE
 - The MOST/LEAST developed, depends on country

2. Business innovation (non-research based innovation)
 - The MOST developed in all WBC incl. less developed countries

3. Research driven innovation (IS narrow)
 - Specialised innovation sub-systems, like:
 - financial (VC);
 - legal (IPR);
 - strategic (TA, TF).

4. "Fundamentals" factors that provide fundamental economic and social stability such as stable macroeconomics, fiscal discipline, public debt control, and no corruption, openness to FDI, etc.
 - The "old" one are not in place
 - while the new one appears (e.g. "grand challenges"):
 - ageing of population (pension funds), energy safety, global financial crisis, structural unemployment, public debts = existential problems
R&D and HE (sub)systems

Similarities: All the WBCs, except Kosovo, UN Res.1244, have **strategic documents** related to research policies in place and coordinated by the line ministries, i.e. ministries of science

Significant differences, e.g.

- **Kosovo** – phase of infancy (€1m in 2010 for public R&D)
- **Albania** – most enthusiastic in strategic programming, comprehensive reforms started in 2006, e.g Agency for RTI (**ARTI**) was established in August 2009
- **Croatia** – mature systems faced with various reforms due to the institutional inertia, low efficiency and weak relations to business needs;

• Establishing vs. reforming research system

• There is a lack of statistical data...not included in international statistical databases...
Business innovation (sub)system
Entrepreneurship and SMEs

- Development started relatively early under the influence of the European Charter for Small Enterprises in 2003 which monitor and evaluate enterprise policies.
- As of 2010, all of the WBCs have in place the basic legal and regulatory frameworks necessary for entrepreneurship and business development e.g. simplifying registration processes for companies.

- Supporting programmes for fostering innovation in SMEs (e.g. buying new equipment, training programmes, promotion of crafts, women entrepreneurship, etc);
- Support to business institutional infrastructure such as business centres, development agencies, clusters, etc.
Institutional infrastructure

In a mapping of the WBC Innovation Infrastructures (ZSI, 2011) the key innovation infrastructures in WBC identified are:

1. Technology and innovation centres;
2. Clusters;
3. Technology and science parks;
4. Business start-up centres;
5. Technology incubators;
and other related organisations (free zones, regional development agencies, …)
Business supporting and innovation infrastructure

<table>
<thead>
<tr>
<th>Innovation Infrastructures Status</th>
<th>ALBANIA</th>
<th>BOSNIA and HERZEGOVINA</th>
<th>CROATIA</th>
<th>FYR of MACEDONIA</th>
<th>MONTENEGRO</th>
<th>SERBIA</th>
<th>Kosovo UN Res.1244</th>
</tr>
</thead>
<tbody>
<tr>
<td>TICs</td>
<td>2 (0)</td>
<td>7 (+5)</td>
<td>9 (+3)</td>
<td>7 (+1)</td>
<td>2 (+2)</td>
<td>5 (+1)</td>
<td>1 (+1)</td>
</tr>
<tr>
<td>Clusters</td>
<td>2 (-2)</td>
<td>5 (+2)</td>
<td>7 (-4)</td>
<td>13 (+5)</td>
<td>1 (+1)</td>
<td>30 (+14)</td>
<td>1 (-2)</td>
</tr>
<tr>
<td>Technology & Science Parks</td>
<td>0 (-)</td>
<td>2 (+2)</td>
<td>5 (+2)</td>
<td>3 (+3)</td>
<td>0</td>
<td>5 (+1)</td>
<td>1 (-)</td>
</tr>
<tr>
<td>Business Incubators / Start-up Centres</td>
<td>2 (-)</td>
<td>17 (+4)</td>
<td>25 (+5)</td>
<td>4 (-6)</td>
<td>3 (+1)</td>
<td>17 (+4)</td>
<td>5 (+1)</td>
</tr>
<tr>
<td>Total Absolute Change compared to 2007</td>
<td>-2</td>
<td>+13</td>
<td>+6</td>
<td>+3</td>
<td>+4</td>
<td>+20</td>
<td>±0</td>
</tr>
</tbody>
</table>

Source: ZSI, Mapping

Business incubators are the most spread innovation facilities: 73 facilities in total, followed by business clusters (59); Business clusters (and then business incubators) are the easiest facility to set-up and also easiest to close (when provided assistance from donors is over); in total, 16 out of 45 clusters operating in 2007 had to be closed by 2011.
(Sub)system for research driven innovation

Specific policy programmes for S-I cooperation, research commercialisation, academic spin-offs, intellectual property rights

support to interface institutions for S-I cooperation, etc. such UT offices, science parks, technology centers, innovation centers, etc.

Only Croatia developed programmes and institutions: BICRO, HIT, RAZUM; IRCro, KONCro; TEHCro, PoC....

Serbia – individual programme initiatives like the “Competition for the Best Technological Innovation in Serbia”, University of Novi Sad

Other countries:

• The most common measures are reduced to establishing of the intermediary institutions like:
 – Innovation/technology centres (all WBC)
 – Technology/science parks (recorded in all WBC except Albania and Montenegro)
(Sub)system for research driven innovation

- A lack of evidence about the achievements of the institutions.
- There is no clear distinction between “business supporting” institutions and “intermediary institutions for S-I cooperation”.

Special programmes:
- A few countries, e.g. Croatia and Montenegro launched fiscal (tax) incentives for better research in companies;
- Programme for development of Venture Capital - only in Croatia
- Technology foresight - not applied in any country
Governance of innovation – some common features

The innovation systems of the WBC are highly centralised “top-down” systems coordinated by the line ministries, primarily:

- **ministries of science** and education in charge for **research-based innovation**, SI cooperation
- **ministries of economy** in charge for fostering **“business innovation”** -innovation in SMEs and entrepreneurship infrastructure

There is a strong “**division of labour**” within these two leading ministries:

- **the lack of cooperation between the government bodies** on strategic development + lack of effective coordination among institutions; fragmented, not coordinated innovation policies and systems;
- **There is a lack of the NATIONAL long-term strategic vision in general**; if exists, innovation or R&D are not vital element of strategies and future.
Governance of innovation – some common features

- **None** of the countries developed innovation strategy based on analytical studies of local - country-specific potentials, down-to-earth analysis (TF).
- **Few** WBC have outlined the **industrial policy** although it should have an important role concerning the technological backwardness and need for production sophistication (only FYR of Macedonia, Croatia and Serbia).
- In contrast, there is a **flood of RTI policy documents** (e.g. Serbia has produced from 2005 to July 2011 around 90 strategic documents).
Governance of innovation – some common features

• The additional efforts are needed to strengthen the Balkan region in terms of innovation and entrepreneurship capacities; these factors have come into focus of policy actions of EC, OECD, WB, etc. in the early 2000’s

Despite many strategic documents WBC are lacking in reality meaningful innovation and technology development strategies
A tentative categorization of WBC by the maturity of NISs (innovation infrastructure and programmes)

<table>
<thead>
<tr>
<th>Country</th>
<th>Research system</th>
<th>Entrepreneurship and SMES (non-research based innovation)</th>
<th>Research based innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Programmes</td>
<td>Institutions</td>
<td>Programmes</td>
</tr>
<tr>
<td>Croatia</td>
<td>Complex</td>
<td>Complex</td>
<td>Complex</td>
</tr>
<tr>
<td>Serbia</td>
<td>Complex</td>
<td>Complex</td>
<td>Moderate</td>
</tr>
<tr>
<td>FYR Macedonia</td>
<td>Familiar</td>
<td>Moderate</td>
<td>Familiar</td>
</tr>
<tr>
<td>B&H</td>
<td>Moderate</td>
<td>Familiar</td>
<td>Beginner</td>
</tr>
<tr>
<td>Montenegro</td>
<td>Familiar</td>
<td>Beginner</td>
<td>Moderate</td>
</tr>
<tr>
<td>Albania</td>
<td>Beginner</td>
<td>Beginner</td>
<td>Beginner</td>
</tr>
<tr>
<td>Kosovo UN Res.1244</td>
<td>Infancy</td>
<td>Infancy</td>
<td>Infancy</td>
</tr>
</tbody>
</table>

Infancy—almost no experience; Beginner—establishing a few institutions/programmes; Moderate—establishing several institutions/programmes; Familiar—track record in institutions/programmes; Complex—existing of a system of institutions and programmes.
Some recommendations

• Establish, strengthen or reform **research system**:

• **Substitute a “flood”** of formally produced strategic documents with comprehensive analytical studies of technological competences;

• Put in place a **system of monitoring and evaluation** of (conceptually correct) supporting institutions, measures and strategies to avoid mismatch between desires and outcomes;

• Put in place appropriate **policy mix** based on **national competences**: stress on upgrading of technological capabilities of companies since **industrial revitalisation** could be more efficient than programmes for research commercialisation;
Some recommendations

• Initiate an exercise in **mapping the technologies** and research with commercial potentials within WB region to identify common thematic (sectoral) programme;

• **strengthen fundamental** economic and social stability factors (fundamentals) which are critical for innovation;

• develop the **regional market** for innovation and research (more than 23 million of people) which provides economy of scale, value chain connections and concentration of research and technological potentials;

• **strengthen science-industry cooperation** following the needs of SMEs;

• improve **statistical systems** for R&D, innovation and entrepreneurship;
Part II

Identification of research and market needs – today and in the future (2030)
In the reports

- Sources of innovation in companies;
- Factors which should be improved to foster regional innovation cooperation of companies (barriers);
- Expected possible outcomes of regional cooperation;
- Regional innovation actions (measures) for improving regional innovation cooperation;
- Actions for fostering science-industry cooperation;
- Research topics of mutual interests of companies and researchers for cooperation.
The most important factors for regional cooperation that need improvements - by companies
The most important factors for regional cooperation that needs improvements ranked the first and second place by all the countries - Comparison
The quality of regional energy supply is recognised by all the countries except Serbia and FYRoM as critical factor; The improvement of the foreign languages proficiencies is placed first by Montenegro and Bosnia and Herzegovina. Corruption is recognised by Serbia and Croatia as an important barrier

<table>
<thead>
<tr>
<th>Country</th>
<th>1. place</th>
<th>2. place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>Improvements and harmonisation of labour market regulation at the regional level</td>
<td>2. The overall quality of the region’s energy supply</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>The improvements of foreign languages proficiencies</td>
<td>The overall quality of the region’s energy supply</td>
</tr>
<tr>
<td>Croatia</td>
<td>The overall quality of the region’s energy supply</td>
<td>Improvements of administrative burdens and permitting procedures for regional cooperation</td>
</tr>
<tr>
<td>FYR Macedonia</td>
<td>Strengthening the interest of universities for cooperation with business in the region</td>
<td>Common regional measures against corruption in state and local administration</td>
</tr>
<tr>
<td>Montenegro</td>
<td>The improvements of foreign languages proficiencies</td>
<td>The availability of regional subsidies and programmes for innovation</td>
</tr>
<tr>
<td>Serbia</td>
<td>Strengthening the interest of business for cooperation with universities in the region</td>
<td>The overall quality of the region’s communications infrastructure</td>
</tr>
</tbody>
</table>

The factors that needs improvements for regional innovation cooperation by countries ranked first and second place – researchers
How to improve science-industry cooperation: comparison

<table>
<thead>
<tr>
<th>Action</th>
<th>Companies</th>
<th>Researchers - Today</th>
<th>Researchers in 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>More funding for collaborative research between universities and businesses</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>More funding for knowledge/technology transfer and expert consultations</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Greater understanding by researchers of the needs of business companies and industry</td>
<td>3</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Development of local partnership/inclusion of universities in clusters or business associations</td>
<td>4</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Greater understanding by researchers of intellectual property rights (IPR) and its implications</td>
<td>5</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Easy access to professional technology transfer officers (or similar staff)</td>
<td>7</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Establishing of university incubators or science parks</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Financial incentives for university staff which cooperate with companies</td>
<td>9</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Better mobility (exchange) of researchers between universities and industry</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Organization of specialized training courses by universities for the needs of industrial sectors and companies</td>
<td>11</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Creation of specialized large-scale programmes for cooperation of companies and research institutions (e.g. technology platforms)</td>
<td>12</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Introduction of regular business/technical advising services at universities for the needs of businesses</td>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Two most important actions for fostering science-industry cooperation are:
- more funding for collaborative research between universities and businesses;
- more funding for knowledge/technology transfer activities and expert consultations.

Have companies already experienced such advising activities without an impact on their businesses?
Most important actions for improving regional innovation cooperation: comparison

<table>
<thead>
<tr>
<th>Action</th>
<th>Companies</th>
<th>Researchers - today</th>
<th>Researchers in 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establishing regional venture capital fund</td>
<td>1</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Creating a regional financing programme for innovation</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Developing regional initiatives for large infrastructural projects</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Common large scale technology programmes</td>
<td>4</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Joint regional approach towards international funding institutions (WB, EU)</td>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Harmonisation and opening of the government’s procurement markets</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Strengthening regional innovation clusters in selected sectors</td>
<td>7</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Common apprentice (trainee) programmes of young experts</td>
<td>8</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Common educational programmes for technical skills, innovation management</td>
<td>9</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Common programmes for mobility of personnel in the region between</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Consistent legal framework aimed at facilitating foreign direct investments in the</td>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Opening and liberalisation of the service market within the WB region</td>
<td>12</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

The three actions least important for industry are among the four most important for researchers.

The establishing of the regional venture capital fund which is perceived by the companies as the most critical factor for improving regional innovation activities is next to the least important factors for researchers.
Most important actions for improving regional innovation cooperation: comparison

- Despite substantial differences in perceiving the most important factors for improving regional innovation cooperation both the sides **recognized the need for developing regional initiatives for large infrastructural projects**. They might be sufficiently large and capital intensive to demand cooperation of several WBC: ICT, transportations, energy resources, clean technologies, business-innovation infrastructures.
Expected outcomes

Importance of possible outcomes of regional cooperation, companies

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Importance Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to new markets</td>
<td>3.5</td>
</tr>
<tr>
<td>Lowering costs for doing business - increase of the firm's efficiency</td>
<td>3.5</td>
</tr>
<tr>
<td>(e.g., the cost of real estate, utilities, ...)</td>
<td></td>
</tr>
<tr>
<td>The availability of the regional financial initiatives (e.g., Regional</td>
<td>3.5</td>
</tr>
<tr>
<td>Investments Bank, e.g., Western...</td>
<td></td>
</tr>
<tr>
<td>Consistent legal framework aimed at facilitating foreign direct</td>
<td>3.4</td>
</tr>
<tr>
<td>investments in the WB region</td>
<td></td>
</tr>
<tr>
<td>Mobility of managers in the region</td>
<td>3.1</td>
</tr>
<tr>
<td>Mobility of engineers and researchers in the region</td>
<td>3.1</td>
</tr>
<tr>
<td>Mobility of skilled workers in the region</td>
<td>3.1</td>
</tr>
<tr>
<td>The access to colleges/universities available in the region for</td>
<td>3.1</td>
</tr>
<tr>
<td>innovation development</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>3.288</td>
</tr>
</tbody>
</table>

1. Lowering costs for doing business;

2. Availability of the regional financial initiatives

3. Access to colleges/universities in the region for innovation development

Versus “access to new markets” (companies)
Measures to improve regional cooperation

1. Identify and remove state and local administrative burdens and procedures for regional cooperation

2. Improve science-industry cooperation by MORE FUNDING for

 a. collaborative research between universities and businesses
 b. Knowledge and technology transfer and consultations

3. Establish regional subsidies and programme for innovation cooperation

4. Establish regional venture capital fund

5. Initiate large infrastructural projects on regional level

6. Improve mobility of personnel at regional and sectoral level

7. Improve legal framework for fostering FDI

8. Open and liberate of service market for R&D

Establish dialog and communication between science and industry sphere by different models like thematic workshops, brokerage events, mobility schemes, etc

Establish/exercise some best practice models for fostering innovation and S-I cooperation at the regional level (next slide)
Collection of Good Practice Examples

45 examples of innovation good practice have been collected using a standard template by many experts.

- Discuss and select around 10-15 measures during the First Review Meeting in February 2012 in Albania with experts and stakeholders/potential implementers;
- Reduce number to around 5 examples being suitable and required from WBC to be implemented;
- Develop “realistic” adaptation schemes;
- Discuss adaptation schemes during Second Review Meeting in Fall of 2012 with implementers.
Social Innovation & Research priorities in social sciences and humanities (SSH)
Social innovation

Social innovations are new concepts and measures to resolve societal challenges, adopted and utilised by social groups concerned (ZSI).

Social innovation is of growing interest since it is realised that economic growth driven by technological innovation have not lessen unemployment, inequalities and poverty.

New societal problems such as ageing, jobless society, climate change, energy safety... needs innovations in social and political sectors.

Our participation

Three events:

• **Consultation session** on research priorities in the field of SSH was held as a pre-conference event;
• Special sub-section organised by WBC-INCO.NET participants: 1.7. Social Innovation for inclusion and integration
• Information/Exhibition desk for the WBC-INCO.NET project
Our participation

Quite successful:
➢ There were 42 participants from WBC (out of total 158) = 26% of all participants
➢ More than 50 bilateral meetings
Consultation session on research priorities in SSH

1. Employment / employability (education/skills, labour market);
2. Economic clusters (WB specific);
3. Demographic challenges (ageing, “investing” in youth, migration, urbanisation);
4. Knowledge society (relationship between national knowledge and educational resources and intern.competitiveness);
5. Social change / social inequalities related to transition;
6. Social sciences and social movements (grass root movements);
7. Technology and innovation, link between research and business;
Relation of research priorities to social innovation and WP for SSH 2012

• Priorities fit quite well into the topic of social innovation and in the WP for SSH 2012;
• Desire: to apply for a common project within EU FP
• Problems: a. to find a coordinator (experienced, interested and willing to coordinate project preparation and implementation); b. Shortage of time
• In the new EU FP 2014-2020- HORIZON 2020 – the status of SSH is not clear.
Contact:

Jadranka Švarc
Institute of Social Sciences Ivo Pilar
Marulićev trg 19
HR-10000 Zagreb, Croatia
Jadranka.svarc@pilar.hr
Phone + 385 1 4886 825